NC7SB3157, FSA3157
Low-Voltage SPDT Analog Switch or 2:1Multiplexer / De-multiplexer Bus Switch

Features

■ Useful in Both Analog and Digital Applications
■ Space-Saving, SC70 6-Lead Surface Mount Package
■ Ultra-Small, MicroPak ${ }^{\text {TM }}$ Leadless Package
■ Low On Resistance: $<10 \Omega$ on Typical at $3.3 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
■ Broad V_{CC} Operating Range: 1.65 V to 5.5 V
■ Rail-to-Rail Signal Handling

- Power-Down, High-Impedance Control Input

■ Over-Voltage Tolerance of Control Input to 7.0V
■ Break-Before-Make Enable Circuitry
■ 250 MHz , 3dB Bandwidth

Description

The NC7SB3157 / FSA3157 is a high-performance, sin-gle-pole / double-throw (SPDT) analog switch or 2:1 multiplexer / de-multiplexer bus switch.
The device is fabricated with advanced sub-micron CMOS technology to achieve high-speed enable and disable times and low on resistance. The break-beforemake select circuitry prevents disruption of signals on the B Port due to both switches temporarily being enabled during select pin switching. The device is specified to operate over the 1.65 to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ operating range. The control input tolerates voltages up to 5.5 V , independent of the V_{CC} operating range.

Ordering Information

Part Number	Top Mark	Eco Status	Packing Method	
NC7SB3157P6X	B7A	RoHS	6-Lead, SC70, EIAJ SC88, 1.25mm Wide Package	3000 Units on Tape and Reel
NC7SB3157L6X	BB	RoHS	6-Lead, MicroPak 1.0mm Wide Package	5000 Units on Tape and Reel
FSA3157P6X	B7A	RoHS	6-Lead, SC70, EIAJ SC88, 1.25mm Wide Package	3000 Units on Tape and Reel
FSA3157L6X	BB	RoHS	6-Lead, MicroPak 1.0mm Wide Package	5000 Units on Tape and Reel

For Fairchild's definition of "green" Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs green.html.

Logic Symbol

Figure 1. Logic Symbol

Analog Symbol

Figure 3. Analog Symbol
Function Table

Input (S)	Function
Logic Level Low	B_{0} Connected to A
Logic Level High	B_{1} Connected to A

Pin Descriptions

Pin Names	Description
A, B_{0}, B_{1}	Data Ports
S	Control Input

Connection Diagrams

2. Pin Assignments SC70

Figure 4. Pin One Orientation

Note:
Orientation of top mark determines pin one location. Read the top product code mark left to right and pin one is the lower left pin (see Figure 4).

Figure 5. Pad Assignments for MicroPak ${ }^{\text {TM }}$

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	-0.5	+7.0	V
V_{S}	DC Switch Voltage ${ }^{(1)}$	-0.5	$\mathrm{V}_{\mathrm{Cc}}+0.5$	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage ${ }^{(1)}$	-0.5	+7.0	V
I_{IK}	DC Input Diode Current at $\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$		-50	mA
$\mathrm{I}_{\text {OUT }}$	DC Output Current		128	mA
$\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$	DC $\mathrm{V}_{\text {CC }}$ or Ground Current		± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias		+150	${ }^{\circ} \mathrm{C}$
T_{L}	Junction Lead Temperature (Soldering, 10 seconds)		+260	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation at $+85^{\circ} \mathrm{C}$		180	mW
ESD	Human Body Model, JESD22-A114		4000	V

Note:

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter		Min.	Max.	Unit
V_{CC}	Supply Voltage Operating		1.65	5.50	V
$\mathrm{V}_{\text {IN }}$	Control Input Voltage ${ }^{(2)}$		0	V_{CC}	V
$\mathrm{V}_{\text {IN }}$	Switch Input Voltage ${ }^{(2)}$		0	V_{CC}	V
$\mathrm{V}_{\text {OUT }}$	Output Voltage ${ }^{(2)}$		0	V_{CC}	V
T_{A}	Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
t_{r}, t_{f}	Input Rise and Fall Time	Control Input $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$	0	10	ns/V
		Control Input $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}$	0	5	ns/V
θ_{JA}	Thermal Resistance, SC70			270	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:

2. Control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{aligned} \mathrm{T}_{\mathrm{A}}= & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		Units
				Min.	Typ.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage		1.65-1.95	$0.75 \mathrm{~V}_{\mathrm{CC}}$			$0.75 \mathrm{~V}_{\mathrm{CC}}$		V
			2.3-5.5	$0.7 \mathrm{~V}_{\mathrm{CC}}$			$0.7 \mathrm{~V}_{\mathrm{CC}}$		
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage		1.65-1.95			$0.25 \mathrm{~V}_{\mathrm{CC}}$		$0.25 \mathrm{~V}_{\mathrm{CC}}$	V
			2.3-5.5			$0.3 \mathrm{~V}_{\mathrm{CC}}$		$0.3 \mathrm{~V}_{\mathrm{CC}}$	
In	Input Leakage Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$	0-5.5		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$
loff	Off State Leakage Current	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$	$1.65-5.5$		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$
R_{ON}	Switch On Resistance ${ }^{(3)}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$	4.5		3.0	7.0		7.0	Ω
		$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}$			5.0	12.0		12.0	
		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}$			7.0	15.0		15.0	
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$	3.0		4.0	9.0		9.0	
		$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$			10.0	20.0		20.0	
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$	2.3		5.0	12.0		12.0	
		$\mathrm{V}_{\mathrm{IN}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}$			13.0	30.0		30.0	
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}$	1.65		6.5	20.0		20.0	
		$\mathrm{V}_{\mathrm{IN}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}$			17.0	50.0		50.0	
Icc	Quiescent Supply Current; All Channels On or Off	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or $\mathrm{GND}^{\text {I }}$ OUT $=0$	5.5			1		10	$\mu \mathrm{A}$
	Analog Signal Range		V_{CC}	0		V_{CC}	0	V_{CC}	V
R RANGE	On Resistance Over Signal Range ${ }^{(3,7)}$	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	4.5					25.0	Ω
		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	3.0					50.0	
		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	2.3					100	
		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	1.65					300	
$\Delta \mathrm{R}_{\mathrm{ON}}$	On Resistance Match BetweenChannels ${ }^{(3,4,5)}$	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=3.15$	4.5		0.15				Ω
		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}} 2.1$	3.0		0.2				
		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.6$	2.3		0.5				
		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.15$	1.65		0.50				
$\mathrm{R}_{\text {flat }}$	On Resistance Flatness ${ }^{(3,4,6)}$	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	5.0		6.0				Ω
		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	3.3		12.0				
		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	2.5		28.0				
		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	1.8		125				

Notes:
3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B Ports).
4. Parameter is characterized, but not tested in production.
5. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}}$ minimum measured at identical V_{CC}, temperature, and voltage levels.
6. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.
7. Guaranteed by design.

AC Electrical Characteristics

Symbol	Parameter	Conditions	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ \\ +85^{\circ} \mathrm{C} \end{gathered}$		Units	Figure Number
				Min.	Typ.	Max.	Min.	Max.		
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}}, \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	Propagation Delay Bus-to-Bus ${ }^{(8)}$	$V_{1}=$ OPEN	1.65-1.95			3.5		3.5	ns	Figure 12 Figure 13
			2.3-2.7			1.2		1.2		
			3.0-3.6			0.8		0.8		
			4.5-5.5			0.3		0.3		
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time Turn-On Time (A to B_{n})	$\begin{aligned} & V_{1}=2 \times V_{C C} \text { for } t_{\text {PZL }} \\ & V_{1}=0 V \text { for } t_{\text {PZH }} \end{aligned}$	1.65-1.95	7.0		23.0	7.0	24.0	ns	Figure 12 Figure 13
			$2.3-2.7$	3.5		13.0	3.5	14.0		
			3.0-3.6	2.5		6.9	2.5	7.6		
			4.5-5.5	1.7		5.2	1.7	5.7		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time Turn-Off Time (A Port to B Port)	$\begin{aligned} & V_{1}=2 \times V_{C C} \text { for } t_{\text {PLZ }} \\ & V_{1}=0 V \text { for } t_{\text {PHZ }} \end{aligned}$	1.65-1.95	3.0		12.5	3.0	13.0	ns	Figure 12 Figure 13
			2.3-2.7	2.0		7.0	2.0	7.5		
			3.0-3.6	1.5		5.0	1.5	5.3		
			4.5-5.5	0.8		3.5	0.8	3.8		
$\mathrm{t}_{\mathrm{B}-\mathrm{M}}$	Break-Before-Make$\text { Time }{ }^{(9)}$		1.65-1.95	0.5			0.5		ns	Figure 14
			2.3-2.7	0.5			0.5			
			3.0-3.6	0.5			0.5			
			4.5-5.5	0.5			0.5			
Q	Charge Injection ${ }^{(9)}$	$\mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}$,	5.0		7.0				pC	Figure 15
		$\mathrm{R}_{\text {GEN }}=0 \Omega$	3.3		3.0					
OIRR	Off Isolation ${ }^{(10)}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=10 \mathrm{MHz}$	1.65-5.5		-57.0				dB	Figure 16
Xtalk	Crosstalk	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=10 \mathrm{MHz}$	1.65-5.5		-54.0				dB	Figure 17
BW	-3dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	1.65-5.5		250				MHz	Figure 20
THD	Total Harmonic Distortion ${ }^{(9)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, 0.5 \mathrm{~V}_{\mathrm{PP}}, \\ & \mathrm{f}=600 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \end{aligned}$	5.0		. 011				\%	

Notes:
8. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the on resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
9. Guaranteed by design.
10. Off Isolation $=20 \log _{10}\left[V_{A} / V_{B n}\right]$.

Capacitance

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$. Capacitance is characterized, but not tested in production.

Symbol	Parameter	Conditions	Typ.	Max.	Units	Figure Number
C_{IN}	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	2.3		pF	
$\mathrm{C}_{\mathrm{IO}-\mathrm{B}}$	B Port Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	6.5		pF	Figure 18
$\mathrm{C}_{I \mathrm{OA}-\mathrm{ON}}$	A Port Capacitance When Switch Is Enabled	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	18.5		pF	Figure 19

Typical Characteristics

Figure 6. Off Isolation, $\mathrm{V}_{\mathrm{Cc}}=1.65 \mathrm{~V}$

Figure 8. Crosstalk, $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$

Figure 10. Bandwidth, $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$

Figure 7. Off Isolation, $\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}$

Figure 9. Crosstalk, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

Figure 11. Bandwidth, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Loading and Waveforms

Notes:

Input driven by 50Ω source terminated in 50Ω C_{L} includes load and stray capacitance Input PRR $=1.0 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

Figure 12. AC Test Circuit

Figure 13. AC Waveforms

Figure 14. Break-Before-Make Interval Timing

AC Loading and Waveforms (continued)

Figure 15. Charge Injection Test

Figure 16. Off Isolation

Figure 18. Channel Off Capacitance

Figure 17. Crosstalk

Figure 19. Channel On Capacitance

Figure 20. Bandwidth

Physical Dimensions

MAAO6AREV5
Figure 21. 6-Lead, SC70, EIAJ SC88, 1.25mm Wide Package
Note: click here for tape and reel specifcations, available at:
http://www.fairchildsemi.com/products/analog/pdf/sc70-6 tr.pdf
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/.

Physical Dimensions

1. CONFORMS TO JEDEC STANDARD M0-252 VARIATION UAAD
2. DIMENSIONS ARE IN MILLIMETERS
3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06AREVC

6-Lead, MicroPak ${ }^{\text {TM }} 1.0 \mathrm{~mm}$ Wide Package

Note: click here for tape and reel specifcations, available at:
http://www.fairchildsemi.com/products/logic/pdf/micropak tr.pdf
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/.

Abstract

ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Ant-Counterfeiting Policy is also stated on our external website, umw.fairchildsemi.com, underSales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience mary problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide ary warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms | Datasheet Identification | Product Status | \quad Definition |
| :--- | :--- | :--- |
| Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in
 any manner without notice. |
| Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild
 Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes
 at any time without notice to improve the design. |
| Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The
 datasheet is for reference information only. |

Rev. 136

